

# Preparation of Pentafluorosulfanyl (SF<sub>5</sub>) Pyrrole **Carboxylic Acid Esters**

William R. Dolbier Jr.\* and Zhaoyun Zheng

Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611-7200

wrd@chem.ufl.edu

Received April 13, 2009

Pyrrole derivatives bearing a pentafluorosulfanyl group are currently unknown. In this paper, a facile preparation of SF<sub>5</sub>-substituted pyrrole carboxylic acid esters in good yield is reported. Utilizing the cycloaddition of an azomethine ylide to pentafluorosulfanylalkynes, a series of dihydropyrroles were prepared and oxidized to the respective 1-tert-butyl-4-(pentafluorosulfanyl)pyrrole-2carboxylic acid esters in good yield. Further treatment of these pyrroles with catalytic triflic acid allowed removal of the *tert*-butyl group.

Because of the acknowledged effect of fluorine on the physical and chemical properties of organic compounds<sup>1,2</sup> and in particular its potential influence on the biological activity of pharmaceutical and agrochemical compounds,<sup>3–5</sup>

- (1) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308-319.
- (2) Schlosser, M. Angew. Chem., Int. Ed. 1998, 110, 1496–1513.
   (3) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881–1886.
- (4) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. *Chem. Soc. Rev.* **2008**, *37*, 320–330.
- (5) Kirk, K. L. Org. Process Res. Dev. 2008, 12, 305–321.
  (6) Lim, D. S.; Choi, J. S.; Pak, C. S.; Welch, J. T. J. Pestic. Sci. 2007, 32,
- (7) Welch, J. T.; Lim, D. S. *Bioorg. Med. Chem.* **2007**, *15*, 6659–6666. (8) Stump, B.; Eberle, C.; Schweizer, W. B.; Kaiser, M.; Brun, R.; Krauth-Siegel, R. L.; Lentz, D.; Diederich, F. *ChemBioChem* **2009**, *10*,

the pentafluorosulfanyl (SF<sub>5</sub>) group has increasingly attracted interest as a novel fluorine-containing substituent. The "discovery" of this substituent by organic, agrochemical, and pharmaceutical chemists has led to a number of recent papers and patents that have confirmed the idea that the SF<sub>5</sub> substituent might indeed provide unique advantages in terms of biological activity. <sup>6-8</sup> According to a SciFinder search, whereas in the eight years prior to 2005 there was an average of only 5-6 patents per year related to biologically active SF<sub>5</sub>-containing compounds, since 2005, there has been an average of 25 such patents submitted per year. 9 Research in this area has, however, generally been hampered by a lack of availability of key SF<sub>5</sub>-containing building blocks. Recently, the commercial availability of SF<sub>5</sub>-benzene derivatives has facilitated exploratory work with these compounds, 10 with the result that most of the encouraging studies mentioned above were carried out using SF5-aromatics as the building blocks.

Heterocycles are very important potential components of pharmaceuticals However, to our knowledge few heterocycles bearing an SF<sub>5</sub>-group are known: furans,<sup>11</sup> pyrazoles, 12 and triazoles. 12 There do not appear to be any mention in the journal literature of ring-substituted SF<sub>5</sub>thiophenes, pyrroles, or pyridines, although there is mention in a patent application of a preparation of SF<sub>5</sub>-pyridines<sup>13</sup> and in a patent of SF<sub>5</sub>-thienylthiophenes.<sup>14</sup>

The search for synthetic pathways to additional classes of SF<sub>5</sub>-heterocycles has therefore become an ongoing goal of our research program. At this time, we would like to report the first general method for preparation of SF<sub>5</sub>-substituted pyrrole derivatives, namely 4-(pentafluorosulfanyl)pyrrole-2-carboxylic acids. Most of the well-known methods for preparing pyrroles, 15 such as the Paal-Knorr synthesis, the Knorr synthesis, the Hantzsch synthesis, the van Leusen synthesis, etc., all involve ring formation via condensation reactions via carbanionic intermediates. All such methods have thus far failed when using SF<sub>5</sub>-substituted substrates, probably because of the instability of anionic intermediates bearing an  $\alpha$ - or  $\beta$ -SF<sub>5</sub> group. For example, in an attempt to utilize a van Leusen approach to prepare SF<sub>5</sub>-pyrroles, the reaction of TosMIC with SF<sub>5</sub>-substituted  $\alpha,\beta$ -unsaturated ester 1 led only to a fluorine-free product, presumably pyrrole 2, formed by preferential elimination of SF<sub>5</sub><sup>-</sup> rather than loss of Tos<sup>-</sup>, which is the usual final, pyrrole-forming step of a van Leusen synthesis (Scheme 1).

There is also no *electrophilic* source of SF<sub>5</sub> (i.e., an SF<sub>5</sub><sup>+</sup> reagent), so one cannot prepare SF<sub>5</sub>-pyrroles directly from pyrroles by electrophilic substitution.

<sup>(9)</sup> Some of the most recent of these patents are: (a) Cao, G.; Xue, C.-B.; Metcalf, B. (Incyte Corp.) WO 2009012259, **2009**; *Chem. Abstr.* **2009**, *150*, 144519. (b) Schnatterer, S.; Maier, M.; Lochhass, F.; Knauf, W.; Seeger, K. (Bayer CropScience) US 2009012143, 2009; Chem. Abstr. 2009, 150, 91849. (c) Holenz, J.; Kers, A.; Kolmodiu, K.; Rotticci, D.; Rakos, L.; Hellberg, S. (Astrazeneca) WO 2009005471 2009; Chem. Abstr. 2009, 150, 121486. (d) Coqueron, P.-Y.; M. C. Grosjean-CournoyerMansfield, D. J.; Hartmann, B.; Kunz, K.; Fischer, R.; Gaertzen, O.; Mattes, A.; Ord, O. (Bayer CropScience) WO 2008101975, **2008**; *Chem. Abstr.* **2008**, *149*, 307539 (e) Comlay, S. M.; Hannam, J. C.; Howson, W.; Lauret, C.; Sabnis, Y. A. (Pfizer Ltd.) WO 2008096231, 2008; Chem. Abstr. 2008, 149, 267756. (f) Billen, D.; Boyle, J.; Critcher, D. J.; Gethin, D. M.; Hall, K. T.; , Kyne, G. M. (Pfizer Ltd) US 20080146643, 2008; Chem. Abstr. 2008, 149, 79598. (g) Zoller, G.; Strobel, H.; Will, D. W.; Wohlfart, P. (Sanofi-Aventis) WO 2008058641, 2008; Chem. Abstr. 2008, 148, 561912

<sup>(10)</sup> Lal, G. S.; Syvret, R. G. Chim. Oggi 2008, 26, 26-27.

<sup>(11)</sup> Dolbier, W. R. Jr.; Mitani, A.; Xu, W.; Ghiviriga, I. Org. Lett. 2006,

<sup>(12)</sup> Ye, C.; Gard, G. L.; Winter, R. W.; Syvret, R. G.; Twamley, B.; Shreeve, J. M. *Org. Lett.* **2007**, *9*, 3841–3844.

<sup>(13)</sup> Williams, A. G.; N. R. Foster WO9422817, 1994 (Zeneca Ltd., UK); Chem. Abstr. 1994, 123, 58831.

<sup>(14)</sup> Zahn, S.; Nordquist, A. F.; Minnich, K. E.; Lal, G. S.; Burgoyne, W. F. Jr.; Klauck-Jacobs, A. (Air Products) US 7,241,904 B2, 2007; Chem.

<sup>(15)</sup> Joule, J. A.; Mills, K. Heterocyclic Chemistry; Blackwell Science: Oxford, 1995.

### SCHEME 1. Attempted van Leusen Synthesis of SF<sub>5</sub>-Pyrroles

$$F_{5}S \longrightarrow OEt + Tol - S - C - N \equiv C: NaH - F_{5}S \longrightarrow N$$

$$TosMIC - F_{5}S \longrightarrow N$$

SCHEME 2. Azomethine Methodology for Synthesis of Pyrroles

Thus far there has been but one ring-forming approach that has been demonstrated to tolerate SF<sub>5</sub> on the building block, and that is cycloaddition chemistry. <sup>16</sup> Diels—Alder reactions of both SF<sub>5</sub>-alkenes <sup>17–19</sup> and SF<sub>5</sub>-alkynes, <sup>11</sup> have been reported, as have 1,3-dipolar cycloadditions of the alkynes. <sup>12,18</sup> A Diels—Alder approach was used in our preparation of SF<sub>5</sub>-furans. <sup>11</sup>

The 1,3-dipolar cycloaddition of azomethine ylides to SF<sub>5</sub>-alkynes, followed by oxidation of the intermediate pyrrolines, appeared to be a reasonable approach to the synthesis of SF<sub>5</sub>-pyrroles, such a method having been successfully implemented by La Porta and co-workers in their preparation of (trifluoromethyl)pyrroles from trifluoromethyl alkynes (Scheme 2).<sup>20</sup>

One advantage of this specific aziridine precursor is the ability to readily remove the *tert*-butyl group from the pyrrole nitrogen.

The required analogous pentafluorosulfanyl alkynes, 4, were readily available by the addition of SF<sub>5</sub>Cl to terminal

### SCHEME 3. Preparation of SF<sub>5</sub>-Alkynes

### SCHEME 4. Preparation of SF<sub>5</sub>-Pyrroles

## SCHEME 5. Removal of tert-Butyl Group

alkynes, followed by base-catalyzed elimination of HCl (Scheme 3),<sup>21–23</sup> and when such alkynes were allowed to react with aziridine ester **3** as depicted in Scheme 4, SF<sub>5</sub>-substituted pyrrolines, **5**, were obtained. Although crude pyrroline **5b** was isolated and characterized, and its regiochemistry of cycloaddition determined, generally the pyrrolines were not fully characterized but were simply isolated and immediately subjected to oxidation by DDQ to form the *tert*-butyl pyrroles **6** (53 to 78% yield), which were themselves fully characterized.

To demonstrate the efficacy of the procedure, the *tert*-butyl group of pyrrole **6a** was cleanly removed by treatment with catalytic quantities of triflic acid in methylene chloride to produce pyrrole **7** in a nonoptimized yield of 72% (Scheme 5).

The procedure reported in this paper for the first time makes a wide variety of SF<sub>5</sub>-substituted pyrrole building blocks available for potential incorporation into possible bioactive compounds.

### **Experimental Section**

NMR spectra were obtained in CDCl<sub>3</sub> using TMS and CFCl<sub>3</sub> as the internal standards for  $^1H/^{13}C$  NMR and  $^{19}F$  NMR respectively; melting points were uncorrected. Aziridine 3 and SF<sub>5</sub>-alkyne starting materials **4b** and **4c** were prepared according to the previous literature.  $^{20,21}$ 

Procedure for Preparation of Alkynes 4a and 4d<sup>21</sup>. Into a flask equipped with a dry ice reflux condenser were added at −40 °C 20 mL of anhydrous hexane, alkyne (3−4 mmol), and SF<sub>5</sub>Cl (1.2 equiv). The solution was stirred at this temperature for 10 min, and Et<sub>3</sub>B (0.1 equiv, 1 M in hexane) was added slowly using a syringe. The solution was stirred for 1 h at −30 °C, and then warmed to rt. The mixture was quenched with aqueous NaHCO<sub>3</sub>, and the organic phase was dried with MgSO<sub>4</sub>. After removing the solvent, 20 mL of DMSO was added to the residue along with 5 equiv of LiOH. The solution was stirred at rt for 2 h, after which the mixture was poured into ice water and neutralized with 2 M HCl. The product was extracted with ether twice, dried with MgSO<sub>4</sub>, and finally purified by column chromatography.

<sup>(16)</sup> Lentz, D.; Seppelt, K. In *Chemistry of Hypervalent Compounds*; Akiba, K., Ed.; Wiley-VCH: New York, 1999; pp 295–326.

<sup>(17)</sup> Brel, V. K. Synthesis 2006, 339-343.

<sup>(18)</sup> Hoover, F. W.; Coffman, D. D. J. Org. Chem. 1964, 29, 3567–3570.
(19) Winter, R. W.; Gard, G. L. J. Fluorine Chem. 2007, 128, 896–901.

<sup>(20)</sup> La Porta, P.; Capuzzi, L.; Bettarini, F. *Synthesis* **1994**, 287–290.

<sup>(21)</sup> Dolbier, W. R. Jr.; Ait-Mohand, S.; Schertz, T. D.; Sergeeva, T. A.; Cradlebaugh, J. A.; Mitani, A.; Gard, G. L.; Winter, R. W.; Thrasher, J. S. J. Fluorine Chem. 2006, 127, 1302–1310.

<sup>(22)</sup> Mitani, A.; Dolbier, W. R. Jr. WO 2007106818, 2007; Chem. Abstr. 2007, 147, 386101.

<sup>(23)</sup> Lal, G. S.; Minnich, K. E. (Air Products) USP 6479645, 2002; Chem. Abstr. 2002, 137, 353172.

**Data for 4a** (43%). <sup>1</sup>H NMR:  $\delta$  2.55–2.62 (m, 2H), 2.85–2.90 (t, J = 10 Hz, 2H), 7.18–7.33 (m, 5H). <sup>13</sup>C NMR:  $\delta$  20.4, 33.5, 127.0, 128.5, 128.8, 139.2. <sup>19</sup>F NMR:  $\delta$  +77.4(m, 1F), +82.6 (d, J = 160 Hz, 4F).

**Data for 4d** (45%). <sup>1</sup>H NMR:  $\delta$  2.40 (s, 3H), 7.20–7.22 (d, J =7.8 Hz, 2H), 7.44–7.47 (d, J = 7.8 Hz, 2H). <sup>13</sup>C NMR:  $\delta$  21.9, 129.7, 132.7, 142.1. <sup>19</sup>F NMR:  $\delta$  +77.3 (p, J = 162 Hz, 1F), +83.05 (d, J = 177 Hz, 4F).

Procedure for Preparation of Pyrroles 6a-d. A mixture of 3 (2.05 mmol, 3 equiv), 4 (0.68 mmol, 1 equiv), and 2.5 mL of xylene was heated at about 130-140 °C for 24 h (monitored by NMR). Product 5 was separated from excess 3 by flash chromatography, and then 5 mL of CCl<sub>4</sub> and 310 mg of DDQ were added to the crude 5 at rt, and the mixture was stirred for 3 h (monitored by TLC). The solvent was then removed by distillation, and the residue submitted to column chromatography to obtain 6 as a white solid.

Although the intermediate dihydropyrroles were not generally isolated but were directly converted to the respective pyrroles by treatment with DDQ, the structure of one dihydropyrrole intermediate, 5b, was demonstrated unambiguously by NMR analysis prior to its oxidative conversion to pyrrole **6b**.

Methyl 1-tert-Butyl-4-pentafluorosulfanyl-3-phenyl-2,5-dihydro-2*H*-pyrrole-2-carboxylate, 5b. <sup>1</sup>H NMR:  $\delta$  1.12 (s, 9H), 3.48 (s, 3H), 4.18 (dd, J = 14.1, 5.1 Hz, 1H), 4.35 (dd, J14.1. 6.6 Hz, 1H), 4.70 (m, 1H), 7.10 (m, 2H), 7.34 (m, 3H). <sup>13</sup>C NMR:  $\delta$  25.0, 51.2, 53.4, 54.6 (C-5), 72.6 (C-2), 126.4, 127.1, 127.6, 131.1, 139.7 (C-3), 147.4 (SF<sub>5</sub>-C), 171.4 (C=O). <sup>19</sup>F NMR:  $\delta + 67.2$  (d, J = 148 Hz, 4F), +76.1 (m, 1F).

Methyl 1-tert-Butyl-4-pentafluorosulfanyl-3-(2-phenylethyl) pyrrole-2-carboxylate, 6a. (60%) mp 115–117 °C.  $^{\rm 1}{\rm H~NMR}$ :  $\delta$ 1.67 (s, 9H), 2.77-2.83 (dd, J = 6.6 and 4.5 Hz, 2H), 2.96-3.02(dd, J = 6.6 and 4.5 Hz, 2H), 3.91 (s, 3H), 7.21–7.34 (m, 6H). <sup>13</sup>C NMR:  $\delta$  28.8, 30.7, 37.9, 52.2, 60.0, 121.4 (m), 123.1 (m), 126.2, 127.1 (m), 128.5, 128.6, 135.0 (m), 142.2, 163.6. <sup>19</sup>F NMR:  $\delta$  +88.7 (m, 1F), +74.3 (d, J = 150 Hz, 4F). HRMS: calcd for C<sub>18</sub>H<sub>22</sub>F<sub>5</sub>NO<sub>2</sub>S, 411.1291; found, 411.1277. Anal. Calcd for C<sub>18</sub>H<sub>22</sub>F<sub>5</sub>NO<sub>2</sub>S: C, 52.55; H, 5.39; N, 3.40. Found: C, 52.73; H, 5.42; N, 3.28.

Methyl 1-tert-Butyl-4-pentafluorosulfanyl-3-phenylpyrrole-2**carboxylate, 6b.** (53%) mp 108–110 °C. <sup>1</sup>H NMR:  $\delta$  1.66 (s, 9H), 3.34 (s, 3H), 7.18–7.31 (m, 6H). <sup>13</sup>C NMR:  $\delta$  30.7, 52.0, 59.8, 121.7 (m), 122.7 (m), 126.9 (m), 127.4, 127.4, 130.1, 134.3, 135.2 (m), 163.9. <sup>19</sup>F NMR:  $\delta$  +87.4 (m, 1F), +75.4 (d, J = 153 Hz,

4F). HRMS: calcd for C<sub>16</sub>H<sub>18</sub>F<sub>5</sub>NO<sub>2</sub>S, 383.0978; found, 383.0973. Anal. Calcd for C<sub>16</sub>H<sub>18</sub>F<sub>5</sub>NO<sub>2</sub>S: C, 50.13; H, 4.73; N, 3.65. Found: C, 50.42; H, 4.61; N, 3.36.

Methyl 1-tert-Butyl-4-pentafluorosulfanyl-3-butylpyrrole-2carboxylate, 6c. (54%) mp 41–44 °C. <sup>1</sup>H NMR:  $\delta$  0.88–0.93 (t, J = 14.4 Hz, 3H), 1.13 - 1.50 (m, 4H), 1.64 (s, 9H), 2.63 - 2.69(t, J = 15.9 Hz, 2H), 3.86 (s, 3H), 7.26(s, 1H). <sup>13</sup>C NMR:  $\delta$  14.0, 23.3, 25.9, 30.8, 33.8, 52.1, 59.7, 121.1 (m), 122.7 (m), 128.1 (m), 134.9 (m), 163.7. <sup>19</sup>F NMR:  $\delta$  +88.8 (m, 1F), +74.3 (d, J = 155 Hz, 4F). HRMS: calcd for  $C_{14}H_{22}F_5NO_2S$ , 363.1291; found, 363.1316. Anal. calcd for C<sub>14</sub>H<sub>22</sub>F<sub>5</sub>NO<sub>2</sub>S: C, 46.27; H, 6.10; N, 3.85. Found: C, 46.39; H, 6.40; N, 3.93.

Methyl 1-tert-Butyl-4-pentafluorosulfanyl-3-p-tolylpyrrole-2**carboxylate, 6d.** (78%) mp 114–116 °C. <sup>1</sup>H NMR: δ 1.68 (s, 9H), 2.36 (s, 3H), 3.41(s, 3H), 7.12 (s, 4H), 7.33 (s, 1H). <sup>13</sup>C NMR:  $\delta$  21.4, 30.7, 52.1, 59.7, 121.5 (m), 122.7 (m), 126.8 (m), 128.2, 130.0, 131.1, 135.3 (m), 137.0, 164.1. <sup>19</sup>F NMR:  $\delta$  +87.6 (p, J = 152 Hz, 1F), +75.4 (d, J = 152 Hz, 4H). HRMS: calcdfor C<sub>17</sub>H<sub>20</sub>F<sub>5</sub>NO<sub>2</sub>S, 397.1135; found, 397.1120. Anal. calcd for C<sub>17</sub>H<sub>20</sub>F<sub>5</sub>NO<sub>2</sub>S: C, 51.38; H, 5.07; N, 3.52. Found: C, 51.40; H, 5.25; N, 3.30.

Procedure for Removal of tert-Butyl Group. Methyl 4-Pentafluorosulfanyl-3-(2-phenylethyl)pyrrole-2-carboxylate, 7. Two drops of CF<sub>3</sub>SO<sub>3</sub>H was added to a flask containing 80 mg of 6a and 2 mL of CH<sub>2</sub>Cl<sub>2</sub> at rt, and the mixture was stirred for about 2 h (monitored by TLC). The mixture was purified directly by column chromatograph to obtain 7 as a white solid (78%): mp 165–167 °C. <sup>1</sup>H NMR:  $\delta$  2.78–2.84 (dd, J = 8.1 and 4.2 Hz, 2H), 3.16-3.22 (dd, J = 8.1 and 4.2 Hz, 2H), 3.92 (s, 3H), 7.19–7.34 (m, 6H), 9.34 (s, 1H). <sup>13</sup>C NMR:  $\delta$  28.4, 37.5, 52.1, 118.8 (m), 122.0 (m), 126.2, 128.0 (m), 128.6, 128.6, 138.5 (m), 142.1, 161.3. <sup>19</sup>F NMR:  $\delta$  +88.9 (p, J = 148 Hz, 1H), +73.6 (d, J= 148 Hz, 4H). HRMS: calcd for  $C_{14}H_{14}F_5NO_2S$ , 355.0665; found, 355.0648. Anal. calcd for C<sub>14</sub>H<sub>14</sub>F<sub>5</sub>NO<sub>2</sub>S: C, 47.32; H, 3.97; N, 3.94. Found: C, 47.04; H, 3.68; N, 3.86.

**Acknowledgment.** The authors gratefully acknowledge Dr. Ion Ghiviriga for assistance with NMR spectroscopy, and Dr. Robert Syvret for generous contributions of SF<sub>5</sub>Cl.

Supporting Information Available: <sup>1</sup>H, <sup>13</sup>C and <sup>19</sup>F NMR spectra of compounds 4a and d, 5b, 6a-d and 7. This material is available free of charge via the Internet at http://pubs.acs.org.